Family medicine and Artificial Intelligence: a human touch

Authors

  • Şeyma Handan Akyön Sincan Education and Research Hospital, Home Health Service. Istanbul, Turkey.

DOI:

https://doi.org/10.32385/rpmgf.v41i6.14376

Keywords:

Artificial Intelligence, Family medicine

Abstract

.

Downloads

Download data is not yet available.

Author Biography

  • Şeyma Handan Akyön, Sincan Education and Research Hospital, Home Health Service. Istanbul, Turkey.

    .

References

1. Nguyen MT, Honcharov V, Ballard D, Satterwhite S, McDermott AM, Sarkar U. Primary Care Physicians’ Experiences With and Adaptations to Time Constraints. JAMA Netw Open. 2024;7(4):e248827. doi:10.1001/jamanetworkopen.2024.8827

2. Fogleman BM et al. Charting Tomorrow’s Healthcare: A Traditional Literature Review for an AI-Driven Future. Cureus. 2024.

3. Topol, E. J. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books.

4. OECD. (2016). Automation and independent work in a digital economy. Policy Brief on the Future of Work. https://www.oecd.org/content/dam/oecd/en/publications/reports/2016/05/automation-and-independent-work-in-a-digital-economy_8516b1e2/b7f0a051-en.pdf

5. Tejal K Gandhi, David Classen, Christine A Sinsky, David C Rhew, Nikki Vande Garde, Andrew Roberts, Frank Federico, How can artificial intelligence decrease cognitive and work burden for front line practitioners?, JAMIA Open, Volume 6, Issue 3, October 2023, ooad079, https://doi.org/10.1093/jamiaopen/ooad079

6. Windak, A., Rochfort, A., & Jacquet, J. (2024). The revised European Definition of General Practice/Family Medicine. A pivotal role of One Health, Planetary Health and Sustainable Development Goals. European Journal of General Practice, 30(1). https://doi.org/10.1080/13814788.2024.2306936

7. Lin SY, Mahoney MR, Sinsky CA. Ten Ways Artificial Intelligence Will Transform Primary Care. J Gen Intern Med. 2019;34(8):1626-1630.

8. Large O., Ward D., Refsum C., Atkinson I. Preparing the NHS for the AI Era: Why Smarter Triage and Navigation Mean Better Health Care. Tony Blair Institute; 18 March 2025. Available: https://institute.global/insights/public-services/preparing-the-nhs-for-the-ai-era-why-smarter-triage-and-navigation-mean-better-health-care

9. Agarwal P, Lall R, Girdhari R. Artificial intelligence scribes in primary care. CMAJ. 2024;196(30):E1042.

10. Tierney AA et al. Ambient AI Scribes to Alleviate the Burden of Clinical Documentation. NEJM Catalyst. 2024.

11. European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Official Journal of the European Union. 2024;L 2024/1689:1-144. Accessed July 7, 2025. https://eur-lex.europa.eu/eli/reg/2024/1689/o

12. Ventres WB, Stone LA, Gibson-Oliver LE, et al. Storylines of family medicine VIII: clinical approaches. Fam Med Com Health 2024;12:e002795. doi:10.1136/ fmch-2024-002795

13. Lim JI, Regillo CD, Sadda SR, et al. Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists' Dilated Examinations. Ophthalmol Sci. 2022;3(1):100228. Published 2022 Sep 30. doi:10.1016/j.xops.2022.100228

14. Gilfoyle M, Bosworth KT, Adesanya TA, et al. Exploring Artificial Intelligence and the Future of Primary Care. Ann Fam Med. 2024;22(2):174.

15. Sasseville M, Ouellet S, Rhéaume C, et al. Bias Mitigation in Primary Health Care Artificial Intelligence Models: Scoping Review. J Med Internet Res. 2025;27:e60269.

16. Hygrell T, Viberg F, Dahlberg E, et al. An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. Europace. 2023;25(4):1332-1338. doi:10.1093/europace/euad036

17. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39. Published 2018 Aug 28. doi:10.1038/s41746-018-0040-6

18. Nori, H., Daswani, M., Kelly, C., Lundberg, S., Ribeiro, M. T., Wilson, M., Liu, X., Sounderajah, V., Carlson, J., Lungren, M. P., Gross, B., Hames, P., Suleyman, M., King, D., & Horvitz, E. (2025). Sequential Diagnosis with Language Models. ArXiv. https://arxiv.org/abs/2506.22405

19. Rosenbacke R, Melhus Å, McKee M, Stuckler D. How Explainable Artificial Intelligence Can Increase or Decrease Clinicians’ Trust in AI Applications in Health Care: Systematic Review. JMIR AI 2024;3:e53207

20. Swinckels L, Bennis FC, Ziesemer KA, Scheerman JFM, Bijwaard H, de Keijzer A, Bruers JJ. The Use of Deep Learning and Machine Learning on Longitudinal Electronic Health Records for the Early Detection and Prevention of Diseases: Scoping Review. J Med Internet Res 2024;26:e48320

21. Grout R, Gupta R, Bryant R, Elmahgoub MA, Li Y, Irfanullah K, Patel RF, Fawkes J, Inness C. Predicting disease onset from electronic health records for population health management: a scalable and explainable Deep Learning approach. Front Artif Intell. 2024 Jan 8;6:1287541. doi:10.3389/frai.2023.1287541. PMID: 38259826; PMCID: PMC10800619.

22. Tsai, M. L., Chen, K. F., & Chen, P. C. (2025). Harnessing electronic health records and artificial intelligence for enhanced cardiovascular risk prediction: A comprehensive review. Journal of the American Heart Association, 14(6), e036946.

23. Levkovich I. Is Artificial Intelligence the Next Co-Pilot for Primary Care in Diagnosing and Recommending Treatments for Depression? Med Sci (Basel). 2025 Jan 11;13(1):8. doi: 10.3390/medsci13010008. PMID: 39846703; PMCID: PMC11755475.

24. Schlegel, K., Sommer, N.R. & Mortillaro, M. Large language models are proficient in solving and creating emotional intelligence tests. Commun Psychol 3, 80 (2025). https://doi.org/10.1038/s44271-025-00258-x

25. Topol, E. J. (2023). As artificial intelligence goes multimodal, medical applications multiply. Science, 381(6663), eadk6139. https://www.science.org/doi/10.1126/science.adk6139

26. Perry, A. AI will never convey the essence of human empathy. Nat Hum Behav 7, 1808–1809 (2023). https://doi.org/10.1038/s41562-023-01675-w

27. Montemayor, C., Halpern, J. & Fairweather, A. In principle obstacles for empathic AI: why we can’t replace human empathy in healthcare. AI & Soc 37, 1353–1359 (2022). https://doi.org/10.1007/s00146-021-01230-z

28. Rudebeck, C.E. (2001). Grasping the Existential Anatomy: The Role of Bodily Empathy in Clinical Communication. In: Toombs, S.K. (eds) Handbook of Phenomenology and Medicine. Philosophy and Medicine, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0536-4_16

29. Goh YS, See QR, Vongsirimas N, Klanin-Yobas P. Artificial Intelligence in Diagnosing Depression Through Behavioural Cues: A Diagnostic Accuracy Systematic Review and Meta-Analysis. J Clin Nurs. Published online February 24, 2025. doi:10.1111/jocn.17694

30. Ayers JW, Poliak A, Dredze M, et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern Med. 2023;183(6):589–596. doi:10.1001/jamainternmed.2023.1838

31. Kleinsmith W, Richard G, Kesselheim JC. Using ChatGPT to practice difficult conversations in medical education. Med Educ. 2023;57(11):1113-1114. doi:10.1111/medu.15139

32. Pei, X., Zuo, K., Li, Y. et al. A Review of the Application of Multi-modal Deep Learning in Medicine: Bibliometrics and Future Directions. Int J Comput Intell Syst 16, 44 (2023). https://doi.org/10.1007/s44196-023-00225-6

33. Tejal K Gandhi, David Classen, Christine A Sinsky, David C Rhew, Nikki Vande Garde, Andrew Roberts, Frank Federico, How can artificial intelligence decrease cognitive and work burden for front line practitioners?, JAMIA Open, Volume 6, Issue 3, October 2023, ooad079, https://doi.org/10.1093/jamiaopen/ooad079

34. Abdelwanis, M., Alarafati, H. K., Tammam, M. M. S., & Simsekler, M. C. E. (2024). Exploring the risks of automation bias in healthcare artificial intelligence applications: A Bowtie analysis. Journal of Safety Science and Resilience, 5(4), 460-469. https://doi.org/10.1016/j.jnlssr.2024.06.001

35. Liaw, W., Kueper, J. K., Lin, S., Bazemore, A., & Kakadiaris, I. (2022). Competencies for the Use of Artificial Intelligence in Primary Care. Annals of family medicine, 20(6), 559–563. https://doi.org/10.1370/afm.2887

Published

2026-01-07

How to Cite

Family medicine and Artificial Intelligence: a human touch. (2026). Portuguese Journal of Family Medicine and General Practice, 41(6), 470-2. https://doi.org/10.32385/rpmgf.v41i6.14376